22. (a) The sign is attached in two places: at $x_1 = 1.00$ m (measured rightward from the hinge) and at $x_2 = 3.00$ m. We assume the downward force due to the sign's weight is equal at these two attachment points: each being *half* the sign's weight of *mg*. The angle where the cable comes into contact (also at x_2) is

$$\theta = \tan^{-1}(d_v/d_h) = \tan^{-1}(4.00 \text{ m}/3.00 \text{ m})$$

and the force exerted there is the tension T. Computing torques about the hinge, we find

$$T = \frac{\frac{1}{2}mgx_1 + \frac{1}{2}mgx_2}{x_2\sin\theta} = \frac{\frac{1}{2}(50.0 \text{ kg})(9.8 \text{ m/s}^2)(1.00 \text{ m}) + \frac{1}{2}(50.0 \text{ kg})(9.8 \text{ m/s}^2)(3.00 \text{ m})}{(3.00 \text{ m})(0.800)}$$

= 408 N.

(b) Equilibrium of horizontal forces requires the (rightward) horizontal hinge force be

$$F_x = T \cos \theta = 245$$
 N.

(c) And equilibrium of vertical forces requires the (upward) vertical hinge force be

$$F_y = mg - T\sin \theta = 163 \text{ N}.$$